Konuşanlar 2. Sezon 67. Bölüm İzle

Hacklink

Hacklink

Hacklink

Marsbahis

Marsbahis

Marsbahis

Hacklink

Hacklink

Hacklink

printable calendar

Hacklink

Hacklink

vdcasino giriş güncel

Hacklink

hacklink panel

hacklink

sekabet giriş güncel

Hacklink

Hacklink

Hacklink

Hacklink

Hacklink

Marsbahis

Rank Math Pro Nulled

WP Rocket Nulled

Yoast Seo Premium Nulled

Hacklink

Hacklink

Hacklink

Hacklink

Hacklink

Marsbahis

pusulabet

Hacklink

Hacklink Panel

Hacklink

Hacklink

Hacklink

Nulled WordPress Plugins and Themes

Hacklink

hacklink

Taksimbet

Marsbahis

Hacklink

Marsbahis

Marsbahis

Hacklink

Hacklink

Bahsine

Tipobet

Hacklink

Betmarlo

Marsbahis

holiganbet

Hacklink

Hacklink

Hacklink

Hacklink

duplicator pro nulled

elementor pro nulled

litespeed cache nulled

rank math pro nulled

wp all import pro nulled

wp rocket nulled

wpml multilingual nulled

yoast seo premium nulled

Nulled WordPress Themes Plugins

Buy Hacklink

Hacklink

Hacklink

Hacklink

Hacklink

Hacklink

Hacklink

Bahiscasino

Hacklink

Hacklink

Hacklink

Hacklink

Hacklink

Marsbahis

Hacklink

Hacklink

Marsbahis

meritking giriş güncel

Hacklink

Hacklink satın al

Hacklink

taraftarium

royalbet

viagra eczane

Betpas

หวยออนไลน์

Hititbet

casibom

meritking

lotobet

taraftarium24

Marsbahis

jojobet

bahiscasino

Marsbahis

Jojobet Güncel Adresi

pinbahis

Casino Review & Bonuses

maltcasino

sekabet

casibom güncel giriş

madridbet

Meritking

betsmove giriş

dizipal

meritking giriş

meritking giriş

marsbahis giriş

casibom güncel giriş

holiganbet

matbet

holiganbet giriş

casibom giriş

casibom giriş

savoybetting

Betpas Giriş

marsbahis

Creating a Chrome Extension for Email Extraction with Python

In a digital world overflowing with information, extracting valuable data like email addresses can be a daunting task. For marketers, sales teams, and researchers, a reliable method for collecting email addresses from websites is essential. In this blog post, we’ll guide you through the process of creating a Chrome extension for email extraction using Python.

What is a Chrome Extension?

A Chrome extension is a small software application that enhances the functionality of the Chrome browser. These extensions allow users to interact with web pages more effectively and can automate tasks, such as extracting email addresses. By creating a Chrome extension, you can simplify the email collection process and make it accessible with just a few clicks.

Why Use Python for Email Extraction?

Python is a powerful and versatile programming language that is widely used for web scraping and automation tasks. Here are several reasons to use Python for email extraction:

  • Simplicity: Python’s syntax is clean and easy to understand, making it ideal for quick development and prototyping.
  • Rich Libraries: Python has an extensive ecosystem of libraries for web scraping (like Beautiful Soup and Scrapy) and data manipulation.
  • Integration Capabilities: Python can easily integrate with various databases, enabling you to store extracted emails efficiently.

Prerequisites

Before we start, ensure you have the following:

  • Basic knowledge of HTML, CSS, JavaScript, and Python
  • A local server set up (using Flask or Django) to run your Python scripts
  • Chrome browser installed for testing the extension

Step-by-Step Guide to Creating a Chrome Extension for Email Extraction

Step 1: Set Up Your Project Directory

Create a new folder for your Chrome extension project. Inside this folder, create the following files:

  • manifest.json
  • popup.html
  • popup.js
  • style.css
  • app.py (for your Python backend using Flask)

Step 2: Create the Manifest File

The manifest.json file is crucial for any Chrome extension. It contains metadata about your extension, such as its name, version, permissions, and the files it uses. Here’s an example of a basic manifest file:

{
  "manifest_version": 3,
  "name": "Email Extractor",
  "version": "1.0",
  "description": "Extract email addresses from web pages.",
  "permissions": [
    "activeTab"
  ],
  "action": {
    "default_popup": "popup.html",
    "default_icon": {
      "16": "icon16.png",
      "48": "icon48.png",
      "128": "icon128.png"
    }
  },
  "background": {
    "service_worker": "background.js"
  }
}

Step 3: Create the Popup Interface

Create a simple HTML interface for your extension in popup.html. This file will display the extracted email addresses and provide a button to initiate the extraction process.

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Email Extractor</title>
    <link rel="stylesheet" href="style.css">
</head>
<body>
    <h1>Email Extractor</h1>
    <button id="extract-btn">Extract Emails</button>
    <div id="email-list"></div>
    <script src="popup.js"></script>
</body>
</html>

Step 4: Style the Popup

Use CSS in style.css to style your popup interface. This step is optional but can enhance the user experience.

body {
    font-family: Arial, sans-serif;
    width: 300px;
}

h1 {
    font-size: 18px;
}

#extract-btn {
    padding: 10px;
    background-color: #4CAF50;
    color: white;
    border: none;
    cursor: pointer;
}

#email-list {
    margin-top: 20px;
}

Step 5: Add Functionality with JavaScript

In popup.js, implement the logic to extract email addresses from the current webpage. This code will listen for the button click, extract email addresses, and send them to your Python backend for processing.

document.getElementById('extract-btn').addEventListener('click', function() {
    chrome.tabs.query({active: true, currentWindow: true}, function(tabs) {
        chrome.scripting.executeScript({
            target: {tabId: tabs[0].id},
            func: extractEmails
        });
    });
});

function extractEmails() {
    const bodyText = document.body.innerText;
    const emailPattern = /[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}/g;
    const emails = bodyText.match(emailPattern);
    
    if (emails) {
        console.log(emails);
        // Send emails to Python backend for further processing
        fetch('http://localhost:5000/extract_emails', {
            method: 'POST',
            headers: {
                'Content-Type': 'application/json'
            },
            body: JSON.stringify({emails: emails})
        })
        .then(response => response.json())
        .then(data => {
            document.getElementById('email-list').innerHTML = data.message;
        })
        .catch(error => console.error('Error:', error));
    } else {
        document.getElementById('email-list').innerHTML = "No emails found.";
    }
}

Step 6: Create the Python Backend

In app.py, create a simple Flask server to handle incoming requests and process the extracted emails.

from flask import Flask, request, jsonify

app = Flask(__name__)

@app.route('/extract_emails', methods=['POST'])
def extract_emails():
    data = request.get_json()
    emails = data.get('emails', [])

    if emails:
        # For demonstration, just return the emails
        return jsonify({'status': 'success', 'message': 'Extracted Emails: ' + ', '.join(emails)})
    else:
        return jsonify({'status': 'error', 'message': 'No emails provided.'})

if __name__ == '__main__':
    app.run(debug=True)

Step 7: Load the Extension in Chrome

  1. Open Chrome and go to chrome://extensions/.
  2. Enable Developer mode in the top right corner.
  3. Click on Load unpacked and select your project folder.
  4. Your extension should now appear in the extensions list.

Step 8: Test Your Extension

Navigate to a web page containing email addresses and click on your extension icon. Click the “Extract Emails” button to see the extracted email addresses displayed in the popup.

Conclusion

Creating a Chrome extension for email extraction using Python can streamline your data collection efforts significantly. By following this step-by-step guide, you can develop an efficient tool to automate email extraction from web pages, saving you time and enhancing productivity. With further enhancements, you can integrate features like database storage, user authentication, and advanced filtering to create a more robust solution.